Главные формулы для егэ по физике

Содержание:

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Период колебаний вычисляется по формуле:

Частота колебаний:

Циклическая частота колебаний:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Циклическая частота колебаний пружинного маятника:

Период колебаний пружинного маятника:

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса:

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Действующее значение напряжения:

Мощность в цепи переменного тока:

Трансформатор

Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Волны

Длина волны может быть рассчитана по формуле:

Разность фаз колебаний двух точек волны, расстояние между которыми l:

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Шпаргалки по физике за 7 класс

В рамках одной статьи сложно охватить весь курс по физике, но мы осветили основные темы за 7 класс и этого достаточно, чтобы освежить знания в памяти. Скачайте и распечатайте обе шпаргалки — одна из них (подробная) пригодится для вдумчивой подготовки к ОГЭ и ЕГЭ, а вторая (краткая) послужит для решения задач.

.

.

Для тех, кто находится на домашнем обучении или вынужден самостоятельно изучать материал ввиду пропусков по болезни, рекомендуем также учебник по физике А. В. Перышкина с формулами за 7 класс и легкими, доступными пояснениями по всем темам. Он был написан несколько десятилетий назад, но до сих пор очень популярен и востребован.

Уровни экзамена

Чтобы узнать, как подготовиться к ЕГЭ по физике с нуля, нужно изучить, какого формата бывают задачи в первой части. Есть два уровня:

  • Базовые (1 балл)
  • Повышенного уровня (2 балла)

Базовые задания обычно решаются 1-2 формулами и не требуют много времени для решения. Но бдительность терять нельзя: в этих заданиях часто ошибаются в размерностях.

В заданиях повышенного уровня нужно либо выбрать правильные утверждения из предложенных, либо проанализировать величины и их изменения, либо установить соответствия. В каждом из таких заданий можно получить 1 балл, если выполнить задание не полностью, но если вы хотите сдать ЕГЭ на максимум баллов, то этот вариант не подойдет.

Словарь ЕГЭ по физике

  • Шероховатая поверхность — в задаче присутствует сила трения, её обязательно нужно учесть.
  • Гладкая поверхность — означает, что в задаче можно пренебречь силой трения.
  • Небольшое (маленькое) тело — тело, размерами которого в условиях данной задачи можно пренебречь.
  • Лёгкая пружина, нить и т.п. — массой указанного тела можно пренебречь.
  • «Пластилиновый шар, двигаясь по гладкой горизонтальной плоскости, столкнулся с покоящимся металлическим шаром и прилип к нему» — абсолютно неупругий удар, импульс сохранился, но механическая энергия — нет, часть энергии ушла в тепло или другие типы энергии.
  • «Тело равномерно перемещают по горизонтальной поверхности, прикладывая к нему постоянную силу» — ключевое слово здесь «равномерно». Это означает, что, по второму закону Ньютона, сумма всех сил равна нулю.
  • Теплопроводящий сосуд — означает, что при медленном перемещении поршня процесс можно считать изотермическим, так как температура содержимого успевает сравняться с температурой окружающей среды.
  • «В калориметре…» — теплообменом с окружающей средой можно пренебречь.
  • Однородный стержень — сделан из одного материала, масса равномерно распределена по его объёму.
  • Малые колебания — амплитуда колебаний некоторой величины достаточно мала, чтобы колебания происходили по закону синуса или косинуса. При больших амплитудах колебаний эти закономерности нарушаются и перестают быть гармоническими. В частности, для математического маятника колебания можно считать малыми только в случае отклонения на небольшой угол α, такой, что sin α ≈ α.
  • Шёлковая нить — шёлк является диэлектриком, поэтому данная нить не проводит электрический ток.
  • Точечный источник света — источник, размерами которого можно пренебречь. Все предметы от него дают тень с чёткими границами.
  • Протяжённый источник света — источник, размерами которого нельзя пренебрегать ни в коем случае. Предметы в данном случае отбрасывают тень с нечёткими границами. Её можно разделить на тень и полутень.

Перевод нужно делать каждый раз, когда вы впервые читаете задачу.

Физика 8: все формулы и определения

«Физика 8: все формулы и определения» — это Справочник по физике в 8 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 4-х страницах) и МЕЛКО (формат JPG, на 1-й странице).

1 файл(ы) 4.29 MB

Физика 8 класс. Все формулы и определения МЕЛКО на одной странице

1 файл(ы) 3.66 MB

В пособии «Физика 8: все формулы и определения» представлено 23 формулы
и определения за весь курс Физики 8 класса:

Глава 1. Тепловые явления

• § 1. Тепловое движение. температура
• § 2. Внутренняя энергия
• § 3. Способы изменения внутренней энергии тела
• § 4. Теплопроводность
• § 5. Конвекция
• § 6. Излучение
• § 7. Количество теплоты. Единицы количества теплоты
• § 8. Удельная теплоёмкость
• § 9. Расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении
• § 10. Энергия топлива. Удельная теплота сгорания
• § 11. Закон сохранения и превращения энергии в механических и тепловых процессах
• § 12. Агрегатные состояния вещества
• § 13. Плавление и отвердевание кристаллических тел
• § 14. График плавления и отвердевания кристаллических тел
• § 15. Удельная теплота плавления
• § 16. Испарение. Насыщенный и ненасыщенный пар
• § 17. Поглощение энергии при испарении жидкости и выделение её при конденсации пара
• § 18. Кипение
• § 19. Влажность воздуха. Способы определения влажности воздуха
• § 20. Удельная теплота парообразования и конденсации
• § 21. Работа газа и пара при расширении
• § 22. Двигатель внутреннего сгорания
• § 23. Паровая турбина
• § 24. КПД теплового двигателя

Глава 2. Электрические явления

• § 25. Электризация тел при соприкосновении. Взаимодействие заряженных тел
• § 26. Электроскоп
• § 27. Электрическое поле
• § 28. Делимость электрического заряда. Электрон
• § 29. Строение атомов
• § 30. Объяснение электрических явлении
• § 31. Проводники, полупроводники и непроводники электричества
• § 32. Электрический ток. Источники электрического тока
• § 33. Электрическая цепь и её составные части
• § 34. Электрический ток в металлах
• § 35. Действия электрического тока
• § 36. Направление электрического тока
• § 37. Сила тока. Единицы силы тока
• § 38. Амперметр. Измерение силы тока
• § 39. Электрическое напряжение
• § 40. Единицы напряжения
• § 41. Вольтметр. Измерение напряжения
• § 42. Зависимость силы тока от напряжения
• § 43. Электрическое сопротивление проводников. Единицы сопротивления
• § 44. Закон Ома для участка цепи
• § 45. Расчёт сопротивления проводника. Удельное сопротивление
• § 46. Примеры на расчет сопротивления проводника, силы тока и напряжения
• § 47. Реостаты
• § 48. Последовательное соединение проводников
• § 49. Параллельное соединение проводников
• § 50. Работа электрического тока
• § 51. Мощность электрического тока
• § 52. Единицы работы электрического тока, применяемые на практике
• § 53. Нагревание проводников электрическим током. Закон Джоуля—Ленца
• § 54. Конденсатор
• § 55. Лампа накаливания. Электрические нагревательные приборы
• § 56. Короткое замыкание. Предохранители

Глава 3. Электромагнитные явления

• § 57. Магнитное поле
• § 58. Магнитное поле прямого тока. Магнитные линии
• § 59. Магнитное поле катушки с током. Электромагниты и их применение
• § 60. Постоянные магниты. Магнитное поле постоянных магнитов
• § 61. Магнитное поле земли
• § 62. Действие магнитного поля на проводник с током. Электрический двигатель

Глава 4. Световые явления

• § 63. Источники света. Распространение света
• § 64. Видимое движение светил
• § 65. Отражение света. Закон отражения света
• § 66. Плоское зеркало
• § 67. Преломление света. Закон преломления света
• § 68. Линзы. Оптическая сила линзы
• § 69. Изображения, даваемые линзой
• § 70. Глаз и зрение

Физика 8: все формулы. Таблица 1

Физика 8: все формулы. Таблица 2

Физика 7: все формулы и определения

«Физика 7: все формулы и определения» — это Справочник по физике в 7 классе, доступный для скачивания в 2-х форматах: КРУПНО (формат PDF, на 3-х страницах) и МЕЛКО (формат JPG, на 1-й странице).

1 файл(ы) 255.55 KB

Физика 7 класс: все формулы и определения МЕЛКО на одной странице

1 файл(ы) 549.72 KB

В пособии «Физика 7: все формулы и определения» представлено 24 формулы
и определения за весь курс Физики 7 класса:

Название формулы (закона, правила) Формулировка закона (правила) Формула
1. Цена деления шкалы прибора

Для определения цены деления (ЦД) шкалы прибора необходимо:
1) из значения верхней границы (ВГ) шкалы вычесть значение нижней границы (НГ) шкалы и результат разделить на количество делений (N);
2) найти разницу между значениями двух соседних числовых меток (А и Б) шкалы и разделить на количество делений между ними (n).

ЦД = (ВГ — НГ) / N

ЦД = (Б — А) / n

2. Скорость

Скорость (ʋ) — физическая величина, численно равна пути (S), пройденного телом за единицу времени (t).

ʋ = S / t
3. Путь

Путь (S) — длина траектории, по которой двигалось тело, численно равен произведению скорости (ʋ) тела на время (t) движения.

S = ʋ*t
4. Время движения

Время движения (t) равно отношению пути (S), пройденного телом, к скорости (ʋ) движения.

t = S / ʋ
5. Средняя скорость

Средняя скорость (ʋср) равна отношению суммы участков пути (S1, S2, S3, …), пройденного телом, к промежутку времени (t1 + t2+ t3+ …), за который этот путь пройден.

ʋср = (S1 + S2 + S3 + …) / (t1 + t2 + t3 + …)
6. Сила тяжести

Сила тяжести — сила (FТ), с которой Земля притягивает к себе тело, равная произведению массы (т) тела на коэффициент пропорциональности (g) — постоянную величину для Земли. (g = 9,8 H/кг)

FТ = m*g
7. Вес

Вес (Р) — сила, с которой тело действует на горизонтальную опору или вертикальный подвес, равная произведению массы (т) тела на коэффициент (g).

Р = m*g
8. Масса

Масса (т) — мера инертности тела, определяемая при его взвешивании как отношение силы тяжести (Р) к коэффициенту (g).

т = Р / g
9. Плотность

Плотность (ρ) — масса единицы объёма вещества, численно равная отношению массы (т) вещества к его объёму (V).

ρ = m / V
10. Момент силы

Момент силы (М) равен произведению силы (F) на сё плечо (l)

М = F*l
11. Условие равновесия рычага

Рычаг находится в равновесии, если плечи (l1, l2) действующих на него двух сил (F1, F2) обратно пропорциональны значениям сил.

a) F1 / F2 = l1 / l2

б) F1*l1 = F2*l2

12. Давление

Давление (р) — величина, численно равная отношению силы (F), действующей перпендикулярно поверхности, к площади (S) этой поверхности

p = F / S
13. Сила давления

Сила давления (F) — сила, действующая перпендикулярно поверхности тела, равная произведению давления (р) на площадь этой поверхности (S)

F = р*S
14. Давление однородной жидкости

Давление жидкости (р) на дно сосуда зависит только от её плотности (ρ) и высоты столба жидкости (h).

p = g ρ h
15.Закон Архимеда

На тело, погруженное в жидкость (или газ), действует выталкивающая сила — архимедова сила (FВ). равная весу жидкости (или газа), в объёме (VТ) этого тела.

FВ = ρ*g*Vт
16. Условие плавания тел

Если архимедова сила (FВ) больше силы тяжести (FТ) тела, то тело всплывает.

FВ> FТ
17. Закон гидравлической машины

Силы (F1, F2), действующие на уравновешенные поршни гидравлической машины, пропорциональны площадям (S1, S2) этих поршней.

F1 / F2 = S1 / S2
18. Закон сообщаю-щихся сосудов

Однородная жидкость в сообщающихся сосудах находится на одном уровне (h)

h = const
19. Механическая работа

Работа (A) — величина, равная произведению перемещения тела (S) на силу (F), под действием которой это перемещение произошло.

А = F*S
20. Коэффициент полезного действия механизма (КПД)

Коэффициент полезного действия (КПД) механизма — число, показывающее, какую часть от всей выполненной работы (АВ) составляет полезная работа (АП).

ɳ = АП / АВ *100%
21. Потенциальная энергия

Потенциальная энергия (ЕП) тела, поднятого над Землей, пропорциональна его массе (т) и высоте (h) над Землей.

ЕП = m*g*h
22. Кинетическая энергия

Кинетическая энергия (ЕК) движущегося тела пропорциональна его массе (m) и квадрату скорости (ʋ2).

ЕК = m*ʋ2 / 2
23. Сохранение и превращение механической энергии

Сумма потенциальной (ЕП) и кинетической (ЕК) энергии в любой момент времени остается постоянной.

EП + EК = const
24. Мощность

Мощность (N) — величина, показывающая скорость выполнения работы и равная:а) отношению работы (А) ко времени (t), за которое она выполнена;б) произведению силы (F), под действием которой перемещается тело, на среднюю скорость (ʋ) его перемещения.

N = A / t

N = F*ʋ

12 (двенадцать) самых необходимых (самых востребованных) формул по физике в 7 классе:

Квантовая физика и элементы астрофизики

Наиболее трудна для понимания старшеклассниками квантовая физика, изучающая квантовую теорию поля, квантовую механику и математическое описание процессов. Разрабатываться это направление начало только в XX веке, благодаря работам Эйнштейна, Планка, Шредингера, Гейзенберга и других ученых. В школьной программе оно занимает не так много места, как другие разделы, поэтому количество заданий по квантовой физике несколько меньше.

Остановимся на некоторых элементах содержания, которые необходимо знать, чтобы успешно пройти испытание.

Подраздел Элементы содержания
Корпускулярно-волновой дуализм

Гипотеза и формула Планка. Фотон, его энергия и импульс.

Фотоэффект, уравнение Эйнштейна. Волны де Бройля.

Дифракция электронов. Давление света.

Физика атома

Модель атома. Работы Бора. Фотоны, их поглощение и излучение.

Линейчатые спектры. Лазер.

Физика атомного ядра

Массовое число и заряд ядра.

Изотопы. Ядерные силы. Радиоактивность и радиоактивный распад. Гамма-излучение. Ядерные реакции.

Элементы астрофизики

Строение Солнечной системы. Характеристики звезд и наука об их происхождении.

Галактики. Вселенная, ее масштабы и эволюция.

В экзаменационной работе квантовой физике и астрофизике посвящены задания №19–21 и №24 первой части. Задачи №26, 27 и 32 основаны на знании школьниками нескольких разделов: кроме квантовой физики, еще механики и электродинамики. Основные формулы, имеющие отношение к этой теме, вынесены в отдельную таблицу кодификатора.

Изучения одной теории по физике для подготовки к ЕГЭ недостаточно, нужно еще применять эти знания на практике, поэтому важную роль играет умение решать задачи. Участники должны быть способны анализировать графики и таблицы, интерпретировать результаты экспериментов, выявлять соответствия, разбираться в изменении физических величин в процессах.

Перед выпускниками школ с хорошим знанием физики и высоким баллом ЕГЭ открываются неплохие перспективы дальнейшего образования. А талантливый студент или аспирант вполне может трудоустроиться в крупную компанию и в полной мере реализовать свой потенциал.

Квантовая физика

Корпускулярно-волновой дуализм:

Энергия фотона: `Е=hnu=(hc)/lambda`
Импульс фотона: `p=h/lambda=(hnu)/c`
Уравнение фотоэффекта: `hnu=A_(вых)+(mv^2)/2`
Запирающее напряжение: `eU_(зап)=(mv^2)/2`

Постулаты Бора:

Уровнии энергии атома водорода: `E_n=(-13,6 эВ)/n^2`
Излучение и поглощение фотона при переходе между уровнями: `hnu_(mn)=|E_n-E_m|`

Ядерная физика:

Дефект массы ядра: `Deltam=Z*m_p+(A-Z)*m_n-m_(ядра)`  
`alpha`-распад: `color(white)(*)_Z^AX->_(Z-2)^(A-4)Y+_2^4He` A — массовое числоZ — зарядовое число
`beta`-распад электронный: `color(white)(*)_Z^AX->_(Z+1)^AY+_(-1)^0e` плюс к этому образуется антинейтрино
`beta`-распад позитронный: `color(white)(*)_Z^AX->_(Z-1)^AY+_(+1)^0e` плюс к этому образуется нейтрино
Закон радиоактивного распада: `N(t)=N_0*2^(-t/T)`  
См. также таблицу Менделеева с комментариями

Это список формул для ОГЭ (9 класс). Вы можете посмотреть более полный список для ЕГЭ (11 класс)

Электростатика и электродинамика – формулы по физике

Закон Кулона F=k∙q1∙q2/R 2 Напряженность электрического поля E=F/q Напряженность эл. поля точечного заряда E=k∙q/R 2 Поверхностная плотность зарядов σ = q/S Напряженность эл. поля бесконечной плоскости E=2πkσ Диэлектрическая проницаемость ε=E0/E Потенциальная энергия взаимод. зарядов W= k∙q1q2/R Потенциал φ=W/q Потенциал точечного заряда φ=k∙q/R Напряжение U=A/q Для однородного электрического поля U=E∙d Электроемкость C=q/U Электроемкость плоского конденсатора C=S∙ε∙ε0/d Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2 Сила тока I=q/t Сопротивление проводника R=ρ∙ℓ/S Закон Ома для участка цепи I=U/R Законы послед. соединения I1=I2=I, U1+U2=U, R1+R2=R Законы паралл. соед. U1=U2=U, I1+I2=I, 1/R1+1/R2=1/R Мощность электрического тока P=I∙U Закон Джоуля-Ленца Q=I 2 Rt Закон Ома для полной цепи I=ε/(R+r) Ток короткого замыкания (R=0) I=ε/r Вектор магнитной индукции B=Fmax/ℓ∙I Сила Ампера Fa=IBℓsin α Сила Лоренца Fл=Bqυsin α Магнитный поток Ф=BSсos α Ф=LI Закон электромагнитной индукции Ei=ΔФ/Δt ЭДС индукции в движ проводнике Ei=ВℓΥSinα ЭДС самоиндукции Esi=-L∙ΔI/Δt Энергия магнитного поля катушки Wм=LI 2 /2 Период колебаний кол. контура T=2π ∙√LC Индуктивное сопротивление XL=ωL=2πLν Емкостное сопротивление Xc=1/ωC Действующее значение силы тока Iд=Imax/√2, Действующее значение напряжения Uд=Umax/√2 Полное сопротивление Z=√(Xc-XL) 2 +R 2

Оптика

Закон преломления света n21=n2/n1= Υ1/ Υ2 Показатель преломления n21=sin α/sin γ Формула тонкой линзы 1/F=1/d + 1/f Оптическая сила линзы D=1/F max интерференции: Δd=kλ, min интерференции: Δd=(2k+1)λ/2 Диф. решетка d∙sin φ=k λ

Квантовая физика

Ф-ла Эйнштейна для фотоэффекта hν=Aвых+Ek, Ek=Uзе Красная граница фотоэффекта νк = Aвых/h Импульс фотона P=mc=h/ λ=Е/с

Физика атомного ядра

Закон радиоактивного распада N=N0∙2 — t / T Энергия связи атомных ядер

t=t1/√1-υ 2 /c 2 ℓ=ℓ0∙√1-υ 2 /c 2 υ2=(υ1+υ)/1+ υ1∙υ/c 2 Е = mС 2

Формулы по физике для егэ 2021 с пояснениями по заданиям

Вход в тесты

Более 2000 тестов с видео-решениями по математике. Более 1000 — по физике.

Подготовка к ЕГЭ. Подготовка к ОГЭ (бывший ГИА).

Справочник

Формулы, теоремы, решение типовых заданий…

На нашем WiKi-справочнике есть разделы по: геометрии, стереометрии, алгебре, физике и др.

Проверь себя

Проверьте себя самостоятельно!

Насколько хорошо Вы (или ваши дети) знают предмет?

А Вы готовы к контрольной?

Записаться на занятия

Телефоны:

  • +7 (910) 874 73 73 +7 (905) 194 91 19 +7 (831) 247 47 55
  • По математике
    • Подготовка к ЕГЭ Подготовка к ОГЭ Онлайн тесты к ЕГЭ и ОГЭ Формулы к ЕГЭ

По физике

  • Подготовка к ЕГЭ Формулы для ЕГЭ Репетитор студенту

По скайпу

  • Репетитор онлайн «Видео Репетитор»

Новости

  • Новости образования Расписание ЕГЭ 2017 Расписание ОГЭ 2017 Расчёт баллов по ОГЭ 2015 Минимальные баллы 2015 Статьи 2012-2015
    • ГИА
      • Расписание ГИА 2013 Расписание ГИА 2014

ЕГЭ

  • Расписание ЕГЭ 2015 Расписание ЕГЭ 2014 Расписание ЕГЭ 2013 ЕГЭ по физике

Обучение

  • Аренда сайта Лекции онлайн Преподавателям

Стоимость О нас Контакты

За одного скидка 15%

За двоих скидка 30%!

«Ученье свет, а неученье — тьма»

Александр Васильевич Суворов

+7 (910) 874-73-73

X=X0+Υ0∙t+(a∙t 2 )/2 S= (Υ 2 —Υ0 2 ) /2а S= (Υ+Υ0) ∙t /2

Формулы по физике для ЕГЭ

Электроемкость C q U.

25.05.2017 18:03:22

2017-05-25 18:03:22

Задания повышенного уровня сложности на 2 балла

Задания повышенной сложности оцениваются в 2 балла. Впрочем, первая часть ЕГЭ по физике проще второй, поэтому правильнее сказать, что эти задания средние по сложности. Всего в экзамене 11 задач из этой категории: 10 из первой части, 1 – из второй. В этих заданиях необходимо проанализировать ситуацию с точки зрения физика-экспериментатора.

Первая часть ЕГЭ по физике включает в себя задания трех типов:

  • Выбор 2 из 5 утверждений
  • Анализ изменения величин
  • Установление соответствия

Рассмотрим пример каждого типа заданий.

1)   Выбор 2 из 5 утверждений.

Здесь необходимо проанализировать каждый пункт с точки зрения формул и законов физики

Важно заметить: в утверждениях никогда не встретится то, что невозможно обосновать

Выбранные варианты можно записать в любом порядке, а один балл можно получить, если выбрать одно правильное и одно неправильное утверждение.

Пример задания на выбор двух утверждений

Заметим, что пункты 1, 2, 4 связаны с температурой. Поэтому, проанализировав температуры, мы убьем сразу трех зайцев.

Запишем формулу для плотности, где M – молярная масса газа. Выразим температуру и применим ее для описания каждой точки графика.

Проанализируем полученные отношения:

  • Температура 1 максимальна
  • Температура 2 минимальна
  • Температура 2 меньше температуры 1. Следовательно, в процессе 1-2 температура газа уменьшается. Первое утверждение верно.
  • Температура 3 не является максимальной. Второе утверждение неверно.
  • Отношение максимальной температуры 1 к минимальной температуре 2 равно 8. Утверждение 4 верно.

Рассмотрим утверждение 3. Из графика видим, что плотность в процессе 2-3 уменьшается. Применим формулу для массы тела:

Заметим, что масса постоянна. Так как плотность уменьшается, то объем должен увеличиваться. Утверждение 3 неверно.

Теперь проанализируем утверждение 5.

В процессе 3-1 плотность газа остается постоянной. Следовательно, объем тоже должен быть постоянным.

Работа газа зависит от увеличения или уменьшения объема. Так как объем не меняется, то работа не будет совершаться.

2) Анализ изменения величин

В этом задании описывается ситуация, затем начальные параметры меняют. Например, шарик катится с горки под действием силы тяжести, а потом массу шарика меняют. Нужно определить, как изменятся (увеличатся, уменьшатся, не изменятся) те или иные две величины.

Один балл можно получить, если вы верно определили изменение только одной величины.

Пример задания на анализ изменения величин:

Начнем со времени. Представим, что вы кидаете мячик параллельно полу с высоты колена, а потом поднимаетесь на 25 этаж своего дома и кидаете его с крыши. Будет ли он дольше лететь? Конечно, поэтому смело пишем, что время полета увеличится.

Теперь давайте разберемся с дальностью полета. Надо понимать, что эта задача – частный случай движения под углом к горизонту. Описываться эта задача будет теми же самыми уравнениями.

Важно помнить, что движение по оси OX будет постоянным. Ведь ускорение g действует только по оси OY!

Запишем уравнение для движения вдоль Ох:

Запишем уравнение для движения вдоль Ох:

Время увеличилось, скорость не изменилась. Зависимость прямо пропорциональная, поэтому путь тоже увеличится.

3) Установление соответствия

В этих заданиях необходимо установить соответствие между графиками и физическими величинами, либо между формулами и физическими величинами. Один балл можно получить при установлении одного правильного соответствия.

Пример задания на установление соответствия:

Для выполнения этого задания нужно вспомнить формулу для изменения импульса. С одной стороны, это изменение можно записать через силу и время, а с другой – через массу и изменение скорости.

Теперь вы знаете, как решать первую часть ЕГЭ по физике! Если хотите разобраться в остальных темах по физике и не только, обратите внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ЕГЭ. Кстати, у меня на курсах MAXIMUM тоже можно поучиться!

Кстати, у меня на курсах MAXIMUM тоже можно поучиться!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector